A First Optical Characterization of Tidal Disruption Events

Arcavi et al. 2014, ApJ, 793, 38

lair ("ya-eer") Arcavi LOOGT & KITP University of California, Santa Barbara

TDEs: Two Major Discoveries in 2011 and 2012

Swift J1644

(Bloom et al. 2011, Burrows et al. 2011, Levan et al. 2011, Zauderer et al. 2011)

Gamma and X-rays, radio No optical

Non-thermal spectrum Plateau in X-ray light curve then (maybe) t^{-5/3} decline

Additional event: Swift J2058 (Cenko et al. 2012), Swift J1112 (Brown et al. 2015) **PS1-10jh** (Gezari et al. 2012)

UV / Optical No X-rays

Hot blackbody (30,000K) Smooth rise and fall light curve ~t^{-5/3} decline

Additional events: Arcavi et al. 2014, Holoien et al. 2014, 2015

TDEs: Why Two So Different Types of Candidates?

angle effect

TDEs: Two Major Discoveries in 2011 and 2012

Swift J1644

(Bloom et al. 2011, Burrows et al. 2011, Levan et al. 2011, Zauderer et al. 2011)

Gamma and X-rays, radio No optical

Non-thermal spectrum Plateau in X-ray light curve then (maybe) t^{-5/3} decline

Additional event: Swift J2058 (Cenko et al. 2012), Swift J1112 (Brown et al. 2015) **PS1-10jh** (Gezari et al. 2012)

UV / Optical No X-rays

Hot blackbody (30,000K) Smooth rise and fall light curve ~t^{-5/3} decline

Additional events: Arcavi et al. 2014, Holoien et al. 2014, 2015

PS1-10jh: The First Optical / NUV TDE

Gezari et al. (2012)

PS1-10jh: Brighter Than Core Collapse Supernovae

PS1-10jh: Hotter Than Core Collapse Supernovae

PS1-10jh: Spectra Not Like Any Known Supernova

Why no hydrogen from the disrupted star?

Gezari et al. (2012)

The Palomar Transient Factory (PTF)

Since 2009 found ~2000 supernovae and other transients Expect to find ~13 TDEs per year (van Velzen et al. 2011)

PTF: Are There Events Between SNe and SLSNe?

PTF: Are There Events Between SNe and SLSNe?

Three PTF Events Coincident With Their Host Center

Can't tell: PTF10nuj (d=2.6) PTF11glr (d=1.2)

Off-center: PTF10iam (d=11.4)

Coincident with center to <0.5 kpc:

PTF09ge (d=1.0) PTF09axc (d=0.9) PTF09dah (d=0.8; confirmed with AO)

The Central Events Are Not Likely AGN

- No recurrent activity
- Outburst spectra not like
 AGN
- Host spectra not like AGN

The Central Events Are Also Hotter Than SNe

PTF09ge is Almost Identical to PS1-10jh

First Steps in the TDE Atlas

First Steps in the TDE Atlas

The Little-Known TDE Candidate SDSS J0748

SDSS spectrum from Feb 2004 with various fits

Xinglong spectrum Mar 2009 shows broad features were transient

Wang et al. (2011)

First Steps in the TDE Atlas

First Steps in the TDE Atlas

First Steps in the TDE Atlas: a H/He Continuum

First Steps in the TDE Atlas: a H/He Continuum

Gezari+ 12 Arcavi+ 14 Wang+11 Holoien+ 15 Arcavi+ 14 Holoien+ 14 Arcavi+ 14 Arcavi+ 14 van Velzen+ 11

First Steps in the TDE Atlas: a H/He Continuum

Gezari+ 12 Arcavi+ 14 ←Active now Wang+11Holoien+ 15 Arcavi+ 14 Holoien+ 14 Arcavi+ 14 Arcavi+ 14 van Velzen+ 11

Almost Exclusively in Post-Merger Hosts

Almost Exclusively in Post-Merger Hosts

This is Not What We Expect Accretion to Look Like

Event	${M_{BH} \over \left(10^6 M_{\odot} ight)}$	$\frac{L_{peak}}{\left(10^{43}\mathrm{erg}\mathrm{s}^{-1}\right)}$	$\frac{E_{tot}}{\left(10^{51}\mathrm{erg}\right)}$	$\begin{array}{c} T_{BB} (@ \sim \text{peak}) \\ (10^4 \text{K}) \end{array}$	$\begin{array}{c} R_{BB} \; (@ \sim \mathrm{peak}) \\ \left(10^{15} \mathrm{cm} \right) \end{array}$	Line Width $(10^3 \mathrm{km \ s^{-1}})$	Host Type
SDSS J0748		n/a	n/a			$10.0\pm0.5~({\rm He~II})$?
PS-10jh	4^{+4}_{-2}	$\gtrsim 22$	$\gtrsim 2.1$	$\gtrsim 3$	$\gtrsim 0.6$	$5.4\pm1.5~({\rm He~II}$ -22d)	E+A
PS-11af	8 ± 2	8.5 ± 0.2	0.41 ± 0.01	1.91 ± 0.08	0.95	No features	?
SDSS TDE2	$35.52^{+55.31}_{-25.80}$	$4.1 \pm 0.2 \ (g\text{-band})$?	$1.82^{+0.07}_{-0.06}$	0.72	$3.4 \pm 1.1 \ (H\alpha)$	E+A
PTF09ge	$5.65^{+3.02}_{-0.98}$	5.7	n/a	$2.19^{+0.33}_{-0.24}$	$0.59^{+0.16}_{-0.12}$	10.1 ± 0.7 (He II -19d)	E+A
PTF09axc	$2.69^{+0.66}_{-0.64}$	1.9	n/a	$1.19^{+0.32}_{-0.17}$	$1.14_{-0.43}^{+0.41}$	$11.9 \pm 0.2 (H\alpha 7d)$	E+A
PTF09djl	$3.57^{+9.97}_{-2.96}$	12.2	n/a	$2.67^{+0.69}_{-0.43}$	$0.58^{+0.41}_{-0.21}$	$6.5 \pm 0.4 \; (\text{H}\alpha \; 2\text{-}62\text{d})$	E+A
ASASSN-14ae	$2.45^{+1.55}_{-0.74}$	8.2 ± 0.5	0.17	2.2 ± 0.1	$0.7 \pm .0.03$	$3.6 \pm 0.2 ~({ m H}lpha)$	E+A

But from accretion expect $L_{peak} \sim 10^{47} (M_{BH,6})^{-3/2} \text{ erg s}^{-1}$ But $0.1 M_{\odot} c^2 \sim 10^{53} \text{ erg}$

But from accretion expect $T_{eff} \sim 10^5 \text{ K}$ (reprocessing material?) But $R_T \sim 7 \cdot 10^{12} R_*^{-1/3} M_{BH,6}^{1/3} M_*^{-1/3} \text{ cm}$ (reprocessing material?) But at R_T : $v \sim 4 \cdot 10^4 M_{BH,6}^{1/3} \text{ km s}^{-1}$

This is Not What We Expected TDEs to Look Like

Event	Seeing the accretion emission through	Host Type
SDSS 107	roprogoging motorial	?
D00 101	reprocessing material	
PS-10jh		$\mathrm{E+A}$
PS-11af	$\bigcap D$?
SDSS TD	Vn	E+A
PTF09ge		E+A
PTF09ax	seeing the circularization, before the	E+A
PTF09djl		E+A
ASASSN-	accretion (Piran et al. 2015)	E+A

But from accretion ex But $0.1M_{\odot}c^2 \sim 10^{53}$ e But from accretion ex But $R_T \sim 7 \cdot 10^{12} R_*^{-1/3}$. But at R_T : $v \sim 4 \cdot 10^4 M$

$$_{H,6})^{-3/2} \,\, {
m erg \, s^{-1}}$$

orocessing material?) ocessing material?)

An X-ray Detection Five Years After PTF09axc

$$L_{0.3-10 \text{keV}} = 7.13^{+12.22}_{-3.06} \times 10^{42} \text{ erg s}^{-1}$$

This is also the only PTF TDE candidate with host [O III] emission:

 $L_{[OIII]} = 2.4 \pm 0.3 \times 10^{39} \text{ erg s}^{-1}$

An X-ray Detection Five Years After PTF09axc

Heckman et al. (2005), nearby AGNs

Hornschemeier et al. (2005), non-AGNs

An X-ray Detection Five Years After PTF09axc

Heckman et al. (2005), nearby AGNs

Hornschemeier et al. (2005), non-AGNs

What's Next? More Data

- Monitoring past events for second flare:
 - Swift monthly visits 1 year after ASASSN-14ae
 - Monitoring x-rays from PTF09axc
- More events, densely sampled:
 - Discovery: iPTF, LSQ, PSST, ASAS-SN, Gaia, OGLE
 - Classification: LCOGT, PESSTO

LCOGT: A Worldwide Network of Robotic Telescopes

What's Next? More Data

- Monitoring past events for second flare:
 - Swift monthly visits 1 year after ASASSN-14ae
 - Monitoring x-rays from PTF09axc
- More events, densely sampled:
 - Discovery: iPTF, LSQ, PSST, ASAS-SN, Gaia, OGLE
 - Classification: LCOGT, PESSTO
 - Followup: LCOGT, Keck (optical) Swift + VLA (X-ray, UV, radio)

What's Next? More Data

- Monitoring past events for second flare:
 - Swift monthly visits 1 year after ASASSN-14ae
 - Monitoring x-rays from PTF09axc
- More events, densely sampled:
 - Discovery: iPTF, LSQ, PSST, ASAS-SN, Gaia, OGLE
 - Classification: LCOGT, PESSTO
 - Followup: LCOGT, Keck (optical) *Swift* + VLA (X-ray, UV, radio)
- Monitor E+A Galaxies: SEATIDE

Summary

Key Results:

- Find three new TDE candidates in PTF and identify a continuum of H/He-rich spectral classes
- Most TDE candidates are in possible post-merger hosts

Future Observations:

- More and more events are turning up (now that we know what to look for).
- Dedicated *Swift*, VLA, LCOGT time, PESSTO also on board

New Questions:

- Are we seeing circularization or reprocessed accretion?
- What is the physical explanation for the spectral diversity and line profiles?
- Why the preference for post-merger hosts?

