SUDARE@VST

SUpernova Diversity And Rate Evolution

E. Cappellaro M. T. Botticella

G. Pignata, A. Grado, L.Greggio, L. Limatola, M. Vaccari,

A. Baruffolo, S. Benetti, F. Bufano, M. Capaccioli, E. Cascone, G. Covone,

D. De Cicco, S. Falocco, M. Della Valle, M. Jarvis, L. Marchetti, N. R. Napolitano

M. Paolillo, A. Pastorello, M. Radovich, P. Schipani, S. Spiro, L. Tomasella, M. Turatto

OUTLINES

AIMS

- probing different progenitor scenarios
- investigating the SN diversity

METHOD

Analysis of the dependence of SN rates on the age distribution of parent stellar population averaging-out over in both a large galaxy sample and a cosmic volume

SUDARE SURVEY

- SN search
- Galaxy sample analysis

RESULTS AND CONCLUSIONS

SN PROGENITORS AND RATE OF OCCURRENCE

SNe la

- ✓ wide range of delay times (τ_{min} few tens of Myr τ_{max} ~ 14 Gyr)
- \checkmark the fraction of stars that end up as a SN Ia is constant over this timescale

$$r_{Ia}(t) = K_{Ia} \int_{\tau_i}^{\min(t,\tau_x)} f_{Ia}(\tau) \psi(t-\tau) d\tau$$

2 key factors

 K_{Ia} number of SN Ia progenitors per unit mass f_{Ia} delay time distribution

CC SNe

- ✓ all stars with mass between $m_{\mu}^{cc} m_{l}^{cc}$ produce CC SNe
- \checkmark negligible delay time (τ < 50 Myr)
- ✓ constant SFR over this timescale

$$r_{CC}(t) = K_{CC} \psi(t)$$

$$K_{\rm CC} = \frac{\int_{m_{\rm L,CC}}^{m_{\rm U,CC}} \phi(m) dm}{\int_{m_{\rm L}}^{m_{\rm U}} m\phi(m) dm} \qquad \begin{array}{c} \phi(m) & \text{initial mass function} \\ m_{\rm U}^{cc} - m_{\rm L}^{cc} & \text{mass range CCSN progenitors} \\ m_{\rm U} - m_{\rm L} & \text{mass range stellar population} \end{array}$$

SFH and SN rates

- immediate environment
- each individual galaxy

averaging out over

in a galaxy sample (rest frame colours, sSFR) via SED fitting in a cosmic volume assuming a cosmic SFH

Simultaneous analysis of SN rates as function Sharp Eyes on European Skies

06/10/15

SUDARE SURVEY

4 years programme (2011-2015)

	SN SEARCH	GALAXY SAMPLE ANALYSIS	
	multi epoch images r m _{lim} ≈ 25	deep stacked images r m _{lim} ≈ 26	
CDFS (4 deg ²)			
VISW VIDEO COFS 1 VST-VOICE-COFS-1 ECOFS MUSYC	r every 3 days g,i every 7 days	u VOICE P.I. Covone Vaccari - INAF GTO J, H, K VIDEO P.I. Jarvis	
SIMPLE VISTA VIDICE-CDFS-4 VIST-VOICE-CDFS-3 VISTA-VIDEO-CDFS-2 VISTA-VIDEO-CDFS-2 E	P.I. Cappellaro INAF GTO	FUV, NUV Galex IRAC ch1,2 Spitzer	
COSMOS (1 deg ²)			
3.5 Suboru Opticol ACS IRAC MIPS 3.0 GALEX	r, every 3 days g,i every 7 days	UltraVISTA survey Muzzin et al 2013	
2.5 	P.I. Pignata Chilean Time		
	Sharp Eyes on European Skies		

INSTRUMENTS

VST 2.6 m

OmegaCAM

0.21 arcsec/pix

06/10/15

TRANSIENT DETECTION

SNe

ST 3368297	Compare States	1955-3345-296
· · · ·	*	
2012-11-10	2012-08-13	2012gv
-		1. 1. A.
2012-11-10	2012-08-13	2012gu
•		
2012-11-10	2012-08-13	2012gt
		100
2012-10-25	2012-08-13	2012gs
	•	
2012-10-07	2012-08-13	2012fq
2012-10-13	2012-08-13	2012fp
2012-10-13	2012-08-13	2012fo
•	i	•
2012-10-07	2012-08-13	2012fn
		199 S. K. S
	1	
2012-09-14	2012-08-13	2012fa
2012-09-08	2012-08-13	2012ez

Variable Stars

AGNs

Spurious detection

PHOTOMETRIC TYPING

SN SAMPLE

 117 SNe
 57% la

 19% II 9% IIn 15% lb/c

27 PSNe weight =0.5

Cappellaro et al 2015

SN SAMPLE

Cappellaro et al 2015

Sharp Eyes on European Skies

06/10/15

DETECTION EFFICIENCY

Cappellaro et al 2015

CONTROL TIME

Cappellaro et al 2015

INSTRUMENTS

VISTA 4.1 m

VISTA Deep Extragalactic Observations (VIDEO) Survey

^{06/10/15} Jarvis et al 2013

VIRCAM

REST FRAME COLOURS

REST FRAME COLOURS

 $0.5 \le z \le 1$

 $0 \le z < 0.5$

06/10/15

Sharp Eyes on European Skies

Sharp Eyes on European Skies

Botticella et al in preparation

CC SN RATE AS A FUNCTION OF COSMIC TIME

Cappellaro et al 2015

SN Ia RATE AS A FUNCTION OF COSMIC TIME

PREDICTED RATES VS OBSERVED RATES

PREDICTED RATES VS OBSERVED RATES

06/10/15

PREDICTED RATES VS OBSERVED RATES

Sharp Eyes on European Skies

Cappellaro et al 2015

SN RATE AS A FUNCTION OF GALAXY COLOURS

CC SN RATE AS A FUNCTION OF sSFR

SUDARE
Mannucci et al 2005
Graur et al 2015

SN Ia RATE AS A FUNCTION OF sSFR

Botticella et al in preparation

06/10/15

SN Ia RATE AS A FUNCTION OF GALAXY MASS

PREDICTED RATES VS OBSERVED RATES

PRELIMINARY RESULT

CONCLUSIONS

- Our measurements of both SN rates pe unit volume are in agreement within the errors with other measurements in the same redshift range.
- > The CC SN rate is consistent with the prediction based on recent SFH's estimate and 8-40 M_{\odot} progenitor mass range
- Errors on SN rate and SFR measurements and the uncertainties on the progenitor mass range are too large to invoke a "SN rate problem" and hence to speculate on possible explanations.
- The dispersion of SN Ia rate measurements does not allow us to discriminate between SD and DD scenarios tough for the DDC scenario seems favoured.
- The SN rates per unit luminosity as a function of U-V and B-K rest frame colours have the same trend in the local Universe and at intermediate redshift
- The clear increase in the SN rates per unit stellar mass with increasing galaxy sSFR has approximately the same trend in the local Universe and at intermediate redshift.
- > The SN Ia rate increase from passive to star burst galaxies of about a factor of 13
- > The CC SN rate increases from star forming to star burst galaxies of a factor of 15

06/10/15