CSI Supernova

Stuart Ryder (AAO)

Circum-Stellar Interaction

Radio properties of CCSNe

CCSNe with the SKA

Pérez-Torres, M.A.

		Table	1: Typical rad	a radio parameters of core-collapse supernovae				
SN Type	<i>f</i> ccsn	α	β	δ	$t_{\text{peak(days)}} \times (\nu/5 \text{ GHz})$	$L_{\rm v,peak}/(10^{26}{\rm erg/s/Hz})$		
Ib/c	26.0%	-1.1	-1.4	-2.5	2 - 100	0.2 - 200		
IIb	10.6%	-1.1	-1.0	-2.0	180	15		
IIP	48.2%	-0.7	-(0.7 - 1.2)	-3.0	30 - 500	$\lesssim 2$		
IIL	6.4%	-0.7	-0.8	-(2.7 - 3.0)	100 - 800	1 - 30		
IIn	8.8%	-0.7	-(1.3 - 1.7)	-3.0	$\gtrsim 800$	100 - 200		

Radio properties of CCSNe

Science Goals

1. What are the progenitors to different (sub-)types of supernova? Gal-Yam et al. 2007

Radio light curve fitting $\Rightarrow \dot{M} (M_{\odot} \text{ yr}^{-1}) / v_{\text{wind}} (\text{km s}^{-1})$

Table 1: Ma	apping of SN types	to their likely	v progenitor s	tar propertie
SN	Progenitor Star^a	M_{ZAMS}	\dot{M}^{b}	V_{∞}
		(M_{\odot})	$(M_{\odot} \text{ yr}^{-1})$	$(\mathrm{km} \mathrm{s}^{-1})$
II-P	RSG	8-20	$10^{-6} - 10^{-5}$	10-20
II-L	RSG/YSG	20-30 (?)	$10^{-5} - 10^{-4}$	20-40
II-pec	BSG(b)	15 - 25	$10^{-6} - 10^{-4}$	100-300
IIb	YSG (b)	10 - 25	$10^{-5} - 10^{-4}$	20-100
Ib	He star (b)	15-25 (?)	$10^{-7} - 10^{-4}$	100-1000
Ic	He star $(b)/WR$	25 - ?	$10^{-7} - 10^{-4}$	1000
Ic-BL	He star (b)/WR	25 - ?	$10^{-6} - 10^{-5}$	1000
IIn (SL)	LBV	30 - ?	(1-10)	50-600
IIn	LBV/B[e] (b)	25 - ?	(0.01-1)	50-600
IIn	RSG/YHG	25 - 40	$10^{-4} - 10^{-3}$	30-100
IIn-P	super-AGB	8 - 10	0.01 - 1	10-600
Ibn	WR/LBV	40-?	10^{-3} -0.1	1000
Ia/IIn	WD (b)	5-8 (?)	0.01-1	50-100

N. Smith 2014

Type IIb SN 2001ig

Ryder et al. 2004

Episodic mass-loss?

C1473: CCSNe NAPA

Supernova	Туре	Host	D (Mpc)	Notes
SN 2010as	Ib/c	NGC 6000	27	~1.5 mJy @ 9.0 & 5.5 GHz
SN 2011cb	IIb	IC 5249	29	~0.5 mJy @ 9.0 & 5.5 GHz
SN 2011hp	Ic	NGC 4219	24	Not detected
SN 2011hs	IIb	IC 5267	26	Bufano et al. (2013)
SN 2011ja	IIP	NGC 4945	4	Chakraborti et al. (2013)
SN 2012hs	II	ESO 213-G2	24	Not detected (ATel 4667)
ASASSN-14ha	II	NGC 1566	10	Not detected (ATel 6480)
PSN J00150875- 3912501	?	NGC 55	2	Not detected (ATel 6663). Nova / LBV outburst?
SN 2015J	IIn	???	~20	~0.1 mJy @ 9.0 & 5.5 GHz

Type IIb SN 2011hs

- Faster rise and decline than SN 2001ig, only half as luminous $(1.6 \times 10^{27} \text{ ergs s}^{-1} \text{ Hz}^{-1})$, no companion?
- Mass loss rate (2 × 10⁻⁵ M_☉ yr⁻¹) almost identical same (WR) progenitor type?

Bufano, Ryder, et al. 2013

Type IIP SN 2011ja

- ATCA detection constrains explosion date.
- Multiple *Chandra* detections indicate low density bubble surrounded by slow-moving wind from >12 M_{\odot} RSG.

SN 1978K radio light curve

- 24 years of ATCA monitoring (C184).
- Type IIn.
- Progenitor mass-loss rate constant for last 35 (V_{shock} / V_{wind}) yr.
- ATCA detections at 34 and 94 GHz.
- ALMA observations in Cycle 3.

Science Goals

- 1. What are the progenitors to different (sub-)types of supernova?
- 2. Towards a complete census of core-collapse supernovae in the local universe.

ASKAP

- Australian Square Kilometre Array Pathfinder.
- 36 × 12m antennas with phased-array feeds ⇒ 30 sq. deg. FoV!
- 0.7–1.8 GHz, 300 MHz bandwidth.
- 10 Survey Science Projects, incl. Variables And Slow Transients (VAST) survey.

SNe in VAST

- Aim to catch SNe on rise at 1.4 GHz in VAST-Wide when flux ~doubles in a week.
- SkyMapper, WiFeS or Gemini ToO for confirmation and sub-type if not previously reported.
- Activate ATCA NAPA to try and catch 5 GHz peak, and *Chandra* ToO.
- Anticipate ~50 core-collapse SNe within 50 Mpc per year, 50% in south, and 50% detection rate ⇒ 1 SN/month?
- 10" resolution barely adequate to spatially resolve SN from AGN and/or diffuse disk emission, but temporal resolution possible against faint background.

Looking ahead

- What fraction of CCSNe give rise to prompt radio emission?
- What can this reveal about their progenitor populations?
- VAST with ASKAP: first census of CCSNe at radio wavelengths.
- ATCA/JVLA follow-up at higher frequencies will still be vital to derive CSM properties and progenitor mass-loss history.

